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Visual Inertial Odometry using Focal Plane Binary Features (BIT-VIO)
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Abstract— Focal-Plane Sensor-Processor Arrays (FPSP)s are
an emerging technology that can execute vision algorithms
directly on the image sensor. Unlike conventional cameras,
FPSPs perform computation on the image plane — at individual
pixels — enabling high frame rate image processing while
consuming low power, making them ideal for mobile robotics.
FPSPs, such as the SCAMP-5, use parallel processing and
are based on the Single Instruction Multiple Data (SIMD)
paradigm. In this paper, we present BIT-VIO, the first Visual
Inertial Odometry (VIO) which utilises SCAMP-5. BIT-VIO
is a loosely-coupled iterated Extended Kalman Filter (iEKF)
which fuses together the visual odometry running fast at 300
FPS with predictions from 400 Hz IMU measurements to
provide accurate and smooth trajectories.

Project Page: https://sites.google.com/view/
bit-vio/home

I. INTRODUCTION

The reduced power consumption and latency associated
with Visual Odometry (VO) and Visual Inertial Odometry
(VIO) are becoming increasingly important as future mobile
devices are anticipated to require rich and accurate spatial
understanding capabilities [40]. Currently, conventional cam-
era technology typically operates at 30-60 frames per second
(FPS) and transfers a non-trivial amount of data from the
sensor to the host device (e.g. a desktop PC). Such data
transfer is not free — in terms of both power and latency —,
and additionally, all these pixels must be then later processed
on the host device.

As an alternative, Focal-Plane Sensor-Processor Arrays
(FPSP)s, such as SCAMP-5, is a new technology that enables
computation to occur on the imager’s focal plane before
transferring the data to a host-device [11]. By performing
early-stage computer vision algorithms on the focal plane
such as feature detections, FPSPs compress the image data
down to the size of the features. By transferring only the de-
tected features, redundant pixel information is not transferred
or potentially even not digitized as FPSPs such as SCAMP-5
can perform analog computation.

In this work, we extend on BIT-VO [33], [34], a visual
odometry algorithm which uses SCAMP-5, and present BIT-
VIO, the first 6-Degrees of Freedom (6-DOF) Visual Inertial
Odometry (VIO) algorithm to utilize the advantages of
the FPSP for vision-IMU-fused state estimation. As shown
in Fig. 1, BIT-VIO achieves a much smoother trajectory
estimate when compared to BIT-VO, while retaining all the
advantageous properties of BIT-VO such as low latency and
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Fig. 1. Comparison of the proposed BIT-VIO algorithm and visual odom-
etry (BIT-VO) overlaid on the reference ground-truth trajectory. BIT-VIO
estimates are closer to the ground-truth trajectory compared to predictions
from BIT-VO. Notice that BIT-VIO effectively removes the high-frequency
noise visible in BIT-VO’s trajectory. The plot was generated using evo [19].

high frame rate pose estimation. In short, the contributions
of our work are:

« Efficient Visual Inertial Odometry operating and cor-
recting by loosely-coupled sensor-fusion iterated Ex-
tended Kalman Filter GEKF) at 300 FPS using predic-
tions from IMU measurements obtained at 400 Hz.

o Uncertainty propagation for BIT-VO’s pose as it is
based on binary-edge-based descriptor extraction, 2D
to 3D re-projection.

o Extensive real-world comparison against BIT-VO, with
ground-truth obtained using a motion capture system.

The remainder of this work is organized as follows. Sec. II
describes the background about SCAMP-5 FPSP. Sec. III
explains the proposed BIT-VIO algorithm. Sec. IV details
our experimental results. Finally, Sec. V concludes the work.

II. BACKGROUND

In this section, we review SCAMP-5, an FPSP technology
developed by the University of Manchester [11], [7], and it’s
application to robotics and visual odometry.

A. SCAMP-5 FPSP

SCAMP-5 is a 256 x 256 processor array, performing
parallel processing in a SIMD fashion on the focal plane
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of the imaging sensor. The parallelism of the SCAMP-
5 FPSP camera technology provides high computational
capabilities and the on-sensor processing enables low-power
operation. Each pixel has a processing element (PE) that
contains 7 analog registers, 13 digital registers, and an ALU,
enabling on-pixel logical and arithmetic operations. The
analog registers can store a real-valued variable, up to around
8-bit resolution. The analog registers can do operations such
as add, negate, split, and compare-against-0. The digital
registers can do MOV, OR, NOR, and NOT operations.
Each PE can communicate EAST, WEST, NORTH, and
SOUTH with its neighboring PEs analog registers and digital
registers.

Beyond SIMD parallelism, SCAMP-5’s digital registers
can be read out as events. Event readout only transfers coor-
dinates of the digital registers set to 1 and is more efficient
than transferring the whole image plane if only a sparse set
and pixels have a register set to 1 [7]. Flooding is a feature
of the SCAMP-5 that enables DREG propagation of 1s to
help further accelerate image processing on its hardware.
Through the SCAMP-5 camera technology’s asynchronous
propagation network, the flooding speed is nearly 62x faster
than accessing the neighbouring pixels on the SCAMP-5 via
conventional message passing [4].

B. Application of SCAMP-5 to Robotics

The SCAMP-5 has been utilized across many robotic
systems. The odometry system by Greatwood et al. per-
forms HDR edge-based odometry on the SCAMP-5 [17]
and achieves lower power consumption than a conventional
camera system. Additionally, the high frame rate nature of
the system meant that it suffered less from motion blurs
under agile motions. In [3], SCAMP-5 is used to track the 4
DoF camera motions using direct image alignment, and all
computation is performed on the sensor itself. In [9], another
algorithm is proposed, performing optical flow to estimate
4 DoF camera motion. In [29], SCAMP-5 is utilized for
visual odometry on unmanned UAVs. Compared to using
a conventional camera, they demonstrated that SCAMP-5-
based systems have a clear practical advantage, for example,
by computing HDR on the SCAMP-5, UAVs can transition
from outdoor to indoor environments whilst successfully
tracking, despite the changes in the lighting conditions.

The high frame-rate nature of SCAMP-5 also opens up the
possibility for many interesting applications. For example, in-
sensor CNN inference can perform hand gesture recognition
for a rock, paper, scissors game at 8000 FPS, and can always
make a robot play a winning hand [25]. While it is a simple
setup, the game requires the system to have low end-to-end
latency and is challenging to replicate using a conventional
camera.

Fully utilising the different computational capabilities
available on the SCAMP-5 device, [5] performs all-on-sensor
mapping and localization. It performs visual route mapping
and localization on the SCAMP-5 and runs at more than 300
FPS on various large-scale datasets.

SCAMP-5 has also been applied for controls, for example,
using focal-plane processing, a ground target was detected
and tracked to guide a small, agile quadrotor UAV [16].
In [18], they perform drone racing, using the SCAMP-5 to
detect the gates. The gate size and location are the only data
that is transferred, with minimal data transfer resulting in 500
FPS. In [8], different visual features such as corner points,
blobs, and edges are extracted on the SCAMP-5 and fed into
a recurrent neural network (RNN) for obstacle avoidance. In-
sensor analog convolutions have been proposed in [48] and
[10]. AnalogNavNet [42] utilized Cain [43] to implement
a CNN that operates on the analog registers on SCAMP-
5 for robotic navigation inside a corridor and racetrack
environment.

C. BIT-VO

Our method builds on the previous work BIT-VO [34],
which performs 6 degrees of freedom (DoF) visual odometry
at 300 FPS using a SCAMP-5 camera. In BIT-VO, the
VO system is clearly separated into a frontend, which per-
forms feature extraction, and a backend, which performs the
matching of the features and the camera pose optimization.
Following this separation, BIT-VO performs the frontend
feature detection on the SCAMP-5 camera itself, where
corners and binary edges are detected and transferred at 300
FPS utilising the SIMD processing capability of SCAMP-5
and the event readouts.

The detected features are then transferred to a host device,
which performs the backend processing. Here, for each cor-
ner feature, a descriptor is formed using the binary edges. Us-
ing brute form matching, corners across frames are matched
using the descriptors, similarly to ORB-SLAM [32]. Once
the correspondences are established, the system is initialised
using a 5-point algorithm [35] and after the initialization, the
camera pose is optimized by minimising the map-to-frame
reprojection error.

By operating at 300 FPS, BIT-VO is robust against rapid,
agile camera motions. However, the estimated trajectory
contains a high-frequency noise, which is due to the noisy
feature detection on the focal plane. In this work, we aim to
address this problem by incorporating IMU measurements.

D. Visual Inertial Odometry

Visual inertial odometry (VIO) is the process of estimating
camera pose by combining visual information from a camera
and inertial measurements from IMUs. VIO provides accu-
rate and robust pose estimates. The sensors complement each
other and are used in many applications and products such
as AR headsets. VIO can be categorised into loosely-coupled
and tightly-coupled methods. In a loosely-coupled method,
the visual and inertial measurements are independently pro-
cessed to estimate the motion and then are fused together for
correction. On the other hand, the tightly-coupled method
directly estimates the motion from the visual and inertial
measurements [41].

There are many different ways one can implement a
VIO system. For example, one can use filtering [2], [30]



approaches, or using non-linear optimization, perform fixed-
lag smoothing [23], [36] or even full smoothing [12]. For the
full smoothing, solving the entire system at every observation
quickly becomes infeasible, hence they rely on iSAM2 [20]
for incremental factor graph optimization.

E. Visual Inertial Odometry on Unconventional Cameras

While a conventional camera is typically used in VO
and visual SLAM, other camera technologies such as event-
based cameras are used in many state-of-the-art VIO al-
gorithms [50], [37], [46], [31]. Event cameras provide low
power usage and low latency benefits over conventional cam-
eras and are also robust against illumination changes [24].
However, while event cameras compress visual information
into a continuous stream of events, they are not user-
programmable and cannot extract a specific feature such as
FAST-corner on the sensor itself [6], [39]. Furthermore, the
data volume transferred by an event camera is proportional
to camera motion, and such a characteristic is not optimal;
for instance, a robot has more data to process during rapid
motion.

III. PROPOSED METHOD

In this section, we first introduce the notations and then
present an overview of the whole system.

A. Notations

The following notation conventions are used in this work,
adopted from [47], [45]:

« Units of a variable A as [A] (e.g. [az] = m/s?).

o Skew-symmetric matrix of A is |A].

« p& represents the translation from frames A — B.

e ¢% represents the Hamiltonian quaternion rotation
(qfw,qffgu,qu,qu) from frames A — B.

e D, q are the expected translation and rotation.

e P, are the error in translation and rotation.

o (4, is the rotational matrix to the quaternion gq.

e Q(w) is quaternion-multiplication matrix of w.

e g=qR 4§~ [%MT, l]T approx. for quaternion dq.

o §®P' = (@a+q1i+q2j+qsk)(pa+pii+p2j+psk) where
the quaternion multiplication is defined by operation ®.

Fig. 2 shows the coordinate frames used in this work.

B. System Overview

Fig. 3 demonstrates an overview of the system. The visual
odometry pipeline is shown on the right, and the inertial
pipeline is shown on the left. The algorithmic components of
the visual odometry are mostly done on a remote host, except
the corner/edge detection, which is done on the SCAMP-5
FPSP.

C. IMU Model and State Prediction

We use iterated Extended Kalman Filter Multi-Sensor
Fusion framework (i(EKF-MSF) [27] and assume absolute
IMU measurements have bias b,,,b, with Gaussian noise
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Fig. 2. Coordinate frame definition of the IMU and the SCAMP-5. In
total, we define four coordinate frames. Notation pﬁ and qff are used to
represent transformation from A to B.

Nw, Ngq. IMU measures and outputs angular velocities w and
linear accelerations a in the IMU-frame [47]:

by =, (1)
bo = o, - 2)

W = Wmeas — b — N

@ = Omeas — ba — N,

In Eq. (1) and (2),' the; subscript “meas” means the mea-
sured value. Terms b,,,b, are the dynamic models of the
IMU biases.

The iEKF-MSF states x are represented in two parts: the
2ty and 25,0 0. The 2%, which is a 16-element
state, is formed by the IMU measurements and dynamic
models, as follows [47]:

i T3 T T
x?]ﬂU = [pw yVw 7bgabz] 9 (3)
Pl =04, (4)
iy = Clyya—g, )
-q 1 i

In Eq. (3)-(6), prT,vaT,qfuT represents the translation,
velocity, and quaternion rotation of the IMU w.r.t. world (or
inertial frame). The dynamic models pi,,o% ¢! propagate
the state and do so at the rate of the IMU.

D. Camera Pose Measurement by FPSP BIT-VO

In the BIT-VO [34], the front-end visual processing occurs
on the SCAMP-5 FPSP. FAST corner and binary edge
features are detected on the chip before it is transferred to
a PC host or other external device. On the host device, the
visual features are further processed to obtain camera pose
estimation (unscaled as the system is monocular), =5, 1,
which is composed of pfuT, quT, i.e. position and orientation.

BIT-VO uses a BIT-descriptor (44-bit long feature), which
is created from local binary edge information around the cor-
ner features and is used to establish feature correspondences
between frames. It differs from other binary descriptors
because BIT-VO does not have access to the image intensity
information. To create a BIT-descriptor, around a corner
feature, BIT-VO creates a 7 x 7 patch and rotates the patch to
be rotationally invariant. In the 7 x 7 patch, BIT-VO creates
3 rings r € {ry,re,73}. To establish a correspondence,
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signal processing to be done on the chip before transferring to a PC host or other external device to be further processed.

hamming distance between two features (as the feature is
binary) is taken to measure how similar two descriptors are.
Though the BIT descriptor is rotation invariant, it is not scale
invariant.

The high frame rate feature detection using SCAMP-5
FPSP simplifies the frame-to-frame and map-to-frame match-
ing processes, as the inter-frame motion between frames is
small. This allows the feature matching to be based upon
simple brute-force search-and-match around a small radius
(3-5 pixels) of the said features.

The map refinement and keyframe selection of the BIT-VO
algorithm are similar to PTAM [22] and SVO [13]. Initial-
ization is done by the 5-point algorithm with RANSAC.

Once the 3D map points and their corresponding k-
projected points on the image plane are found, the pose is
estimated by minimizing the reprojection error:

k
1
5", 07) = argmin 3" p (|ju; — (T

> p)lP) s ()
peT,acT] < 520
where 7(T¢ - ,p;) is the function projecting 3D points on
the vision image plane and p(-) is the Huber loss function,
reducing the effect of outlying data.

The 2% ,1_ /o (scaled with scale \) part of the 10-element
state is defined as:

‘TEIT—VO = [AAv 502'CT7 ApZ)T7 69111))T] (@)

We assume BIT-VO vision sensor measurement z2g;r_vo
has Gaussian noise in position and rotational n,,n,. The

measurement model is given by,

j2s
]

{C(qﬂj) (Pe + C(quu)pf)k + P+ 1p,

ZBIT-VO

(10)

] )
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DS, g5 propagate the state and do so at the BIT-VO vision
sensor rate, which is the rate of 300 FPS [45][47].

E. Uncertainty Propagation of FPSP BIT-VO Pose

BIT-VO itself does not propagate an uncertainty or consist
of covariance for its vision 6-DOF pose. 3D map points and
correspondences are computed on the PC, where the pose
is optimized by minimizing the reprojection error. Once the
optimal pose [pS7,¢¢7] is found from the set, we take the
pose and, using Ceres [1], generate a 6 x 6 covariance block
for the optimized parameters based on the optimal pose. It
starts with forming the Jacobian of the residual blocks with
respect to [p¢T, ¢¢T], then the Hessian H is approximated
as JT.J, lastly with the covariance being computed as the
inverse of the approximated Hessian ¥ = H~1 = (J7J)~L.
Note, here the covariance matrix is a 6 x 6 positive definite
matrix, correctly matching the system’s DOF rather than the
state’s dimensionality (which is 7 as we have 3 parameters
for the translation and 4 parameters for the quaternion).

FE. Correcting State via iEKF

We may either assume BIT-VO vision sensor measure-
ments as relative (as in depending between time-instants k
and k+m) or absolute (e.g. IMU or GPS measurements). If it
is a relative measurement, see Alg. 1. Otherwise, if absolute,
the algorithm remains the same, but the updates must occur
on k not k + m.



Algorithm 1 Correcting State via iEKF-MSF Update Process

1: Build full covariance matrix Pk+m| k-

2. Update is Zx = Hypm X mik + Hy Xy + 7, where H
is the measurement Jacobian found via zgrr_vo.

3: Compute residual ri 4y, = 2k k+m — Zk,k+m ZHX.

4: Compute innovation Syim = HPeimpH” + R,
where R, is covariance of measurement and H =
(Hi ks Hipmk]- o

5. Compute K = Py H7 S}, = [KF, KL, 7.

6: Correct state Tp 1 miktm = Lhim|k + Kitmk+m and
covariance Pyt jktm = Prtmik — KitmSerm Kl ypm-
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Fig. 4. FPSP SCAMP-5 reprojection error on a 256 X 256 focal-plane
imaging output with a less than one-pixel error (within the dashed black).

IV. EXPERIMENTAL RESULTS

This section presents the experimental results. First, we
explain the experimental setup and the calibration of the
system, then we discuss the experimental results. We evaluate
the system on eight different trajectories (labelled A-H).

A. Experimental Setup

The proposed BIT-VIO algorithm is tested at 300 FPS,
running BIT-VO on a SCAMP-5 FPSP device. Additionally,
we attach an Intel D435i RealSense Camera to provide IMU
measurements at 400 Hz.

Evaluations are done against ground-truth data from a
Vicon motion capture system, which consisted of 14 cameras
calibrated and time-synced. As both BIT-VO and BIT-VIO
assume a fast frame rate, hence small inter-frame motion,
we cannot evaluate our method using a standard benchmark
dataset for direct comparison with other methods. Hence,
BIT-VIO is evaluated on eight real-world trajectories against
BIT-VO. These trajectories are designed to mimic practical
applications and are a compilation of circular, straight,
curved, and zigzag trajectories. The recorded trajectories
are aligned and scaled to the ground-truth trajectory as our
setup is monocular. We measure the Absolute Trajectory
Error (ATE) [26] and report the Root Mean Squared Error
(RMSE) [44] together with the median to evaluate the
accuracy against the ground-truth. BIT-VO and BIT-VIO use
a host device to perform the visual odometry backend, and
for the host device, we use an external laptop with 13th Gen
Intel Core i7-12700 CPU.

TABLE I
ATE COMPARISON OF BIT-VIO AND BIT-VO. THE LOWER ATE 1S
EMPHASIZED IN BOLD.

Traj. Type BIT-VO ATE (m) BIT-VIO ATE (m) Length (m)

A RMSE: 0.215732 0.167631 2.1
median: 0.170214 0.152106

B RMSE: 0.134617 0.12071 2.6
median: 0.119079 0.111856

c RMSE: 0.094479 0.086911 1.7
median: 0.07561 0.068756

D RMSE: 0.175323 0.153335 2.12
median: 0.174444 0.140952

E RMSE: 0.206866 0.195263 2.4
median: 0.15714 0.149103

F RMSE: 0.134361 0.134328 2.01
median: 0.116587 0.124618

G RMSE: 0.132624 0.10535 1.8
median: 0.125924 0.095664

H RMSE: 0.10864 0.104366 2.55
median: 0.089689 0.08788

B. Sensor Calibration

We use Kalibr [15] to perform the calibration between
SCAMP-5 and the IMU. For the extrinsic calibration, we
obtain p§ = (0.006m,0.04m,0.07m) with respect to the
IMU-frame. To calibrate the IMU intrinsics: acceleration, gy-
roscopic, and bias noises, 14, N, bg, b, Wwe conducted a cali-
bration using the Allan variance method [14], [15], [38], [49].
We achieve an accelerometer noise density and random walk:
[0.001865m /5% /v Hz,0.002m/s%/v/Hz] and gyroscope
noise density and random walk [0.001865m,/s? /v Hz,4 x
10=%m/s3/v/Hz]. The IMU gyroscope bias intrinsics error
estimates are within the 3-o error bound. To calibrate the
camera intrinsics we first estimated the focal length, cam-
era center [fx, fy,cx,cy], and distortion coefficients, and
then optimized the intrinsics by optimization on a radtan
lens [21], [28]. We achieve a focal length: [257.27,258.00]
pixels and principal point: [127.44, 128.17] pixels, with a less
than one pixel error as shown in Fig. 4.

C. Accuracy and Robustness

As shown in Table I, when incorporating an IMU, the
state generally enhances its estimation with a more accurate
trajectory, showcasing lower RMSE and median closer to the
ground-truth values. Traj. A and B are circular and curved,
Traj. C is straight, and the rest are combinations of all with
zigzag. The case of Traj. G in Fig. 5, shows that IMU-alone
accumulates error and drifts away from ground-truth data, as
shown in the large translational, rotational RMSE. In fact, it
has the largest RMSE compared to BIT-VO and BIT-VIO.
The BIT-VIO algorithm fixes this IMU error drift, using the
BIT-VO update to align it closer to ground-truth data, hence
why its RMSE is the lowest of the three. This is true in
both the translational and rotational context, where we can
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see that in the left and middle plots of Fig. 5, BIT-VIO
RMSE generally resides much more below both IMU and
BIT-VO. To add, the BIT-VIO algorithm deals well with fast,
hostile motions, covering the main limitation of the prior
work BIT-VO with the high-frequency noise on its predicted
trajectories. Through all plots in Fig. 5, BIT-VO maintains
its noise. BIT-VIO not only maintains itself closer to ground-
truth trajectory but also does well to track smoothly with less
noise, especially in more violent, quick, hostile motions.

In Fig. 6, we can see projecting the trajectory error for
both BIT-VO and BIT-VIO on ground-truth Traj. H, onto
an xz-plane, qualitatively gives us further insight into the
magnitude of the high-frequency error present in BIT-VO and
how much is removed by BIT-VIO. Not only the trajectory
estimated by BIT-VIO is smoother, but it is also closer to
the ground-truth trajectory.

V. CONCLUSION

We have presented BIT-VIO, the first-ever 6-Degrees of
Freedom (6-DOF) Visual Inertial Odometry (VIO) algorithm,

which utilizes the advantages of the SCAMP-5 FPSP for
vision-IMU-fused state estimation. BIT-VIO operates and
corrects by loosely-coupled sensor-fusion iterated Extended
Kalman Filter GEKF) at 300 FPS with an IMU at 400
Hz. We evaluate BIT-VIO against BIT-VO and demonstrate
improvements in ATE across many trajectories. Moreover,
the high-frequency noise evident in BIT-VO is effectively
filtered out, resulting in a smoother estimated trajectory.

In the future, we plan to take the next steps toward a
tightly-coupled VIO approach using the SCAMP-5 FPSP.
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