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#Junseo Kim 

Assignment 2 
 

Summer 2023 
 

1 Kalman Filter 

Use pyGame, or any other similar libraries, to simulate a simplified 2D robot and perform state 
estimation using a Kalman Filter. Motion Model: 

 

r = 0.1 m, is the radius of the wheel, ur and ul are control signals applied to the right and left 
wheels. wx = N (0, 0.1) and wy = N (0, 0.15) 

Simulate the system such that the robot is driven 1 m to the right. Assume the speed of each 
wheel is fixed and is 0.1 m/s 
Use these initial values 

 

and assume the motion model is computed 8 times a second. Assume every second a 
measurement is given: 

 

 

where rx = N (0, 0.05) rx = N (0, 0.075) 

 

Figure 1: Kalman Filter Implementation with randomness 0.01 



2  

 

Figure 2: Kalman Filter Implementation with randomness 0.02 

Red lines show the path with noise, white line shows the path with the Kalman filter 

Blue Circle represents the covariance ellipse 

 

Figure 3: Kalman Filter Algorithm [1] 

With the application of the Kalman filter Algorithm, the prediction step involves predicting the next 
state with the covariance with motion model.  

The state prediction can be determined with the following equation 

𝑃 = 𝑃 + 𝑄 

where P is the state covariance and Q is the noise covariance set in the requirement 

Measurement model is given by the equation 

𝑧 = 𝐻𝑥 + 𝑟 

where z is the measurement, H is the measurement matrix, x is the state, and r is the measurement 
noise 

As for the correction step, the state is updated with the Kalman gain 

𝑥 = 𝑥 + 𝐾(𝑦 − 𝐻𝑥) 

y is the actual measurement. Covariance is also updated with new equation 

𝑃 = (𝐼 − 𝐾𝐻)𝑃 

Detailed Codes can be found at 
https://github.com/JunseoKim19/State_estimation/blob/main/Kalman_Filter_Example.py 

 
Full simulation can be found at 
https://youtu.be/Jcn_a-hLRNk 
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2 Extended Kalman Filter 

Repeat the previous assignment, this time with a classic motion model and range observations made 
from a landmark located at M = [10,10]. L is the distance between the wheel, known as wheelbase, 
and is 0.3m. 

 

Assume 

 
 

Then the equations become: 

 

 

wψ = N (0, 0.01) and wω = N (0, 0.1). Program the robot such that it loops 
around point M. 

(a) Compute the EKF with the linear measurement model in the previous 
assignment. 

(b) Compute the EKF with range/bearing measurements of point M. Assume 
range noise is N(0,0.1) and bearing noise is N(0,0.01). Range is in meters, and 
bearing is in radians. Visualize the measurements as well. 

 
Part a) 
 
As Extended Kalman Filter (EKF) is applied for the same linear measurement used in part a, the 
result is very similar. 

 
Figure 4: Extended Kalman Filter Algorithm [1] 

 
In the prediction step,  

𝑥 = 𝑓(𝑥, 𝑢) + 𝑤 
The state transition function, with the state and control input, and the process noise were simplied 
as the following: 

𝑥 = 𝑝𝑟𝑒𝑣𝑥 +
𝑟

2
(𝑢𝑟 + 𝑢𝑙) ∗ 𝑛𝑝. 𝑎𝑟𝑟𝑎𝑦([1,1]) ∗ 𝑇 + 𝑛𝑜𝑖𝑠𝑒 

The covariance equation is simplied to  
𝑃 = 𝐹𝑃𝐹 + 𝑄 

as F is assume to be the identity matrix since linear model is applied to the system. 
 
For the correction step, 

Jacobian matrix is also considered as an identity matrix because the measurement function H is 
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assumed to be a linear function.  

The updated state estimation is also simplified due to the linear model 

𝑥 = 𝑥 + 𝐾(𝑧 − 𝐻) → 𝑥 = 𝑥 + 𝐾𝑥 

 
Figure 5: Extended Kalman Filter with linear model 

Detailed Codes can be found at 
https://github.com/JunseoKim19/State_estimation/blob/main/Extended_K

alman_Filter_a.py 

 
Full simulation can be found at 

https://youtu.be/O7Jk0CAinwY 

 

Part b) 

 

For part b, new landmark is applied and pyplot was utilized instead of pygame for better 

visualization. 

 

As new motion model and observation model are applied for the system, Jacobian for each model is 

determined for the extended Kalman filter estimation. 

 

The motion model of the robot is given by: 

𝑥𝑡 = 𝑥𝑡−1 + 𝐷𝑇 ∗ 𝑟 ∗ 𝑢𝑤 ∗ cos(𝜑𝑡−1) 

𝑦𝑡 = 𝑦𝑡−1 + 𝐷𝑇 ∗ 𝑟 ∗ 𝑢𝑤 ∗ sin(𝜑𝑡−1) 

𝜑𝑡 = 𝜑𝑡−1 + 𝐷𝑇 ∗ 𝑟 ∗
𝑢𝜑

𝐿
 

𝑢𝑤 is the average of the control signals to the wheels and 𝑢𝜑 is the difference of the control signals 

for better computation. 

Based on the motion model, Jacobian of the motion can be determined: 

𝑗𝐹 = [
1 0 −𝐷𝑇 ∗ 𝑟 ∗ 𝑢𝑤 ∗ sin(𝜑𝑡−1)

0 1 𝐷𝑇 ∗ 𝑟 ∗ 𝑢𝑤 ∗ cos(𝜑𝑡−1)

0 0 1

] 

 

Next, the observation model of the robot is given by: 

𝑑 = √(𝑥𝑙 − 𝑥𝑡)2 + (𝑦𝑙 − 𝑦𝑡)2 
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𝜃 = 𝑎𝑡𝑎𝑛2(𝑦𝑙 − 𝑦𝑡 , 𝑥𝑙 − 𝑥𝑡) − 𝜑𝑡 

 

Based on the observation model, Jacobian of the observation model can be determined: 

 

𝐻 = [
−

𝑥𝑙 − 𝑥𝑡

𝑑
−

𝑦𝑙 − 𝑦𝑡

𝑑
0

𝑦𝑙 − 𝑦𝑡

𝑑2
−

𝑥𝑙 − 𝑥𝑡

𝑑2
−1

]  

 

Then, extended Kalman filter is applied to the system according to the Figure 4. 

 

In the prediction step, motion model and the Jacobian of the motion model is determined. Then, 

prediction for the covariance is made based on the predicted Jacobian and the process noise 

covariance. 

 

In the update step, Jacobian of the observation model is determined with the measurement 

prediction. Then, the difference between the actual measurement and the predicted measurement 

will be determined. With the Kalman gain, new state estimation and covariance estimation is found. 

 

 
Figure 6: Extended Kalman Filter with non-linear model 

Detailed Codes can be found at 
https://github.com/JunseoKim19/State_estimation/blob/main/Extended_K

alman_Filter_b.py 

 
Full simulation can be found at 

https://youtu.be/vFin5vsXAR0 
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