
1

#Junseo Kim

Assignment 2

Summer 2023

1 Kalman Filter

Use pyGame, or any other similar libraries, to simulate a simplified 2D robot and perform state
estimation using a Kalman Filter. Motion Model:

r = 0.1 m, is the radius of the wheel, ur and ul are control signals applied to the right and left
wheels. wx = N (0, 0.1) and wy = N (0, 0.15)

Simulate the system such that the robot is driven 1 m to the right. Assume the speed of each
wheel is fixed and is 0.1 m/s
Use these initial values

and assume the motion model is computed 8 times a second. Assume every second a
measurement is given:

where rx = N (0, 0.05) rx = N (0, 0.075)

Figure 1: Kalman Filter Implementation with randomness 0.01

2

Figure 2: Kalman Filter Implementation with randomness 0.02

Red lines show the path with noise, white line shows the path with the Kalman filter

Blue Circle represents the covariance ellipse

Figure 3: Kalman Filter Algorithm [1]

With the application of the Kalman filter Algorithm, the prediction step involves predicting the next
state with the covariance with motion model.

The state prediction can be determined with the following equation

𝑃 = 𝑃 + 𝑄

where P is the state covariance and Q is the noise covariance set in the requirement

Measurement model is given by the equation

𝑧 = 𝐻𝑥 + 𝑟

where z is the measurement, H is the measurement matrix, x is the state, and r is the measurement
noise

As for the correction step, the state is updated with the Kalman gain

𝑥 = 𝑥 + 𝐾(𝑦 − 𝐻𝑥)

y is the actual measurement. Covariance is also updated with new equation

𝑃 = (𝐼 − 𝐾𝐻)𝑃

Detailed Codes can be found at
https://github.com/JunseoKim19/State_estimation/blob/main/Kalman_Filter_Example.py

Full simulation can be found at
https://youtu.be/Jcn_a-hLRNk

3

2 Extended Kalman Filter

Repeat the previous assignment, this time with a classic motion model and range observations made
from a landmark located at M = [10,10]. L is the distance between the wheel, known as wheelbase,
and is 0.3m.

Assume

Then the equations become:

wψ = N (0, 0.01) and wω = N (0, 0.1). Program the robot such that it loops
around point M.

(a) Compute the EKF with the linear measurement model in the previous
assignment.

(b) Compute the EKF with range/bearing measurements of point M. Assume
range noise is N(0,0.1) and bearing noise is N(0,0.01). Range is in meters, and
bearing is in radians. Visualize the measurements as well.

Part a)

As Extended Kalman Filter (EKF) is applied for the same linear measurement used in part a, the
result is very similar.

Figure 4: Extended Kalman Filter Algorithm [1]

In the prediction step,

𝑥 = 𝑓(𝑥, 𝑢) + 𝑤
The state transition function, with the state and control input, and the process noise were simplied
as the following:

𝑥 = 𝑝𝑟𝑒𝑣𝑥 +
𝑟

2
(𝑢𝑟 + 𝑢𝑙) ∗ 𝑛𝑝. 𝑎𝑟𝑟𝑎𝑦([1,1]) ∗ 𝑇 + 𝑛𝑜𝑖𝑠𝑒

The covariance equation is simplied to
𝑃 = 𝐹𝑃𝐹 + 𝑄

as F is assume to be the identity matrix since linear model is applied to the system.

For the correction step,

Jacobian matrix is also considered as an identity matrix because the measurement function H is

4

assumed to be a linear function.

The updated state estimation is also simplified due to the linear model

𝑥 = 𝑥 + 𝐾(𝑧 − 𝐻) → 𝑥 = 𝑥 + 𝐾𝑥

Figure 5: Extended Kalman Filter with linear model

Detailed Codes can be found at
https://github.com/JunseoKim19/State_estimation/blob/main/Extended_K

alman_Filter_a.py

Full simulation can be found at

https://youtu.be/O7Jk0CAinwY

Part b)

For part b, new landmark is applied and pyplot was utilized instead of pygame for better

visualization.

As new motion model and observation model are applied for the system, Jacobian for each model is

determined for the extended Kalman filter estimation.

The motion model of the robot is given by:

𝑥𝑡 = 𝑥𝑡−1 + 𝐷𝑇 ∗ 𝑟 ∗ 𝑢𝑤 ∗ cos(𝜑𝑡−1)

𝑦𝑡 = 𝑦𝑡−1 + 𝐷𝑇 ∗ 𝑟 ∗ 𝑢𝑤 ∗ sin(𝜑𝑡−1)

𝜑𝑡 = 𝜑𝑡−1 + 𝐷𝑇 ∗ 𝑟 ∗
𝑢𝜑

𝐿

𝑢𝑤 is the average of the control signals to the wheels and 𝑢𝜑 is the difference of the control signals

for better computation.

Based on the motion model, Jacobian of the motion can be determined:

𝑗𝐹 = [
1 0 −𝐷𝑇 ∗ 𝑟 ∗ 𝑢𝑤 ∗ sin(𝜑𝑡−1)

0 1 𝐷𝑇 ∗ 𝑟 ∗ 𝑢𝑤 ∗ cos(𝜑𝑡−1)

0 0 1

]

Next, the observation model of the robot is given by:

𝑑 = √(𝑥𝑙 − 𝑥𝑡)2 + (𝑦𝑙 − 𝑦𝑡)2

5

𝜃 = 𝑎𝑡𝑎𝑛2(𝑦𝑙 − 𝑦𝑡 , 𝑥𝑙 − 𝑥𝑡) − 𝜑𝑡

Based on the observation model, Jacobian of the observation model can be determined:

𝐻 = [
−

𝑥𝑙 − 𝑥𝑡

𝑑
−

𝑦𝑙 − 𝑦𝑡

𝑑
0

𝑦𝑙 − 𝑦𝑡

𝑑2
−

𝑥𝑙 − 𝑥𝑡

𝑑2
−1

]

Then, extended Kalman filter is applied to the system according to the Figure 4.

In the prediction step, motion model and the Jacobian of the motion model is determined. Then,

prediction for the covariance is made based on the predicted Jacobian and the process noise

covariance.

In the update step, Jacobian of the observation model is determined with the measurement

prediction. Then, the difference between the actual measurement and the predicted measurement

will be determined. With the Kalman gain, new state estimation and covariance estimation is found.

Figure 6: Extended Kalman Filter with non-linear model

Detailed Codes can be found at
https://github.com/JunseoKim19/State_estimation/blob/main/Extended_K

alman_Filter_b.py

Full simulation can be found at

https://youtu.be/vFin5vsXAR0

6

Reference

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge, MA: MIT Press, 2010.

[2] T. D. Barfoot, State Estimation for Robotics. Cambridge, United Kingdom: Cambridge University
Press, 2017.

