
1

#Junseo Kim

Assignment 3

Summer 2023

1 Particle Filter (Linear model)

Use pyGame, or any other similar libraries, to simulate a simplified 2D robot and perform state

estimation using a Kalman Filter. Motion Model:

r = 0.1 m, is the radius of the wheel, ur and ul are control signals applied to the right and left

wheels. wx = N (0, 0.1) and wy = N (0, 0.15)

Simulate the system such that the robot is driven 1 m to the right. Assume the speed of each

wheel is fixed and is 0.1 m/s

Use these initial values

and assume the motion model is computed 8 times a second. Assume every second a

measurement is given:

where rx = N (0, 0.05) rx = N (0, 0.075)

Initialization

For the particle filter algorithms, particles each representing a possible state are set in the

algorithm. Each particle is then assigned with initial weight.

[2]

Prediction

Particles move based on the control input and the motion model as given in the requirement.

The motion model will include noise to account for the uncertainties in the system.

[2]

Correction

2

Each particle is then updated based on how they predicted well compared to the actual

measurement. This is calculated with the likelihood (Gaussian). Particles with better prediction

will get a higher weight.

[2]

Resampling

Once the weights are updated, particles are resampled. This is done for each particle

proportional to its weight which also means that particles with higher weights are more likely to

be resampled.

[2]

Estimation

The new state of the system is then estimated with the average of the weighted particles.

Figure 1: Particle Filter Algorithm [1]

Figure 2: Particle Filter with the linear measurement model

3

In Figure 2, the red line represents the estimated states with particles and the blue line represents

the true state of the system.

The true state is updated in the ‘simulate_observation’ function from the code and the noise is

added to simulate the real-world conditions

The estimated state of the system is based on the observations and control inputs. The estimated

state is updated in the ‘particle_filter_localization’ function from the code. The particles are moved

based on the control inputs and then weighted based on how they predict the observations.

In the simulation, only 100 particles were used. Even though the particle filter is not the best

solution to solve the linear measurement model, the accuracy of the particle filter will increase with

the increase in the number of particles and decreasing the amount of noise.

For this linear measurement model, Gaussian distribution is used as the likelihood function in the

particle filter.

𝑓(𝑥|𝜇, 𝜎) =
1

√2𝜋𝜎2
exp (−

(𝑥 − 𝜇)2

2𝜎2
)

Where 𝜇 is the mean and 𝑏 is the standard deviation.

In the resampling process, a large number of particles are drawn from this distribution. Due to the

central limit theorem, random variables tend towards a Gaussian distribution regardless of the

shape of the original distribution.

However, other distributions can be used for the likelihood function. For part 2 using the non-linear

model, double exponential distribution (Laplace distribution) is used to deal with the Non-gaussian

model.

Detailed Codes can be found at
https://github.com/JunseoKim19/State_estimation/blob/main/Particle_Filter_taska.py

Full simulation can be found at

https://youtu.be/3Md9g_VARHo

4

2 Particle Filter (Non-linear model)

Repeat the previous assignment, this time with a classic motion model and range observations made

from a landmark located at M = [10,10]. L is the distance between the wheel, known as wheelbase,

and is 0.3m.

Assume

Then the equations become:

wψ = N (0, 0.01) and wω = N (0, 0.1). Program the robot such that it loops
around point M.

The main difference from Part 1 is the system model, and control inputs because a non-linear model

is applied to the system. For a non-linear model system, new control input: yaw rate is applied to

the system.

The observation model will, therefore, involve the distance and angle measurement from the

landmark to the robot’s position and orientation.

In terms of the noise, as the non-linear model is applied, noise should be included in both velocity

and yaw rate for accurate estimation.

5

Figure 3: Particle Filter for the non-linear model

From Figure 3, the ground state (blue line) is hidden under the estimated state (red line) and is not

visible through the simulation.

As for the likelihood, double exponential distribution (Laplace distribution) was used for the system

𝑓(𝑥|𝜇, 𝑏) =
1

2𝑏
𝑒𝑥𝑝 (−

|𝑥 − 𝜇|

𝑏
)

Where 𝜇 is the mean and 𝑏 is the standard deviation.

Compared to the Gaussian distribution, the Laplace distribution will give more likelihood to larger

deviations from the mean and will be more concentrated around the mean.

However, after running the simulation the difference between two likelihood functions were

minimal.

The detailed process of the particle filter implementation is described in Part 1.

Detailed Codes can be found at
https://github.com/JunseoKim19/State_estimation/blob/main/Particle_Filt

er_taskb.py

Full simulation can be found at

https://youtu.be/S6kPBNh-YTk

6

Reference

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge, MA: MIT Press, 2010.

[2] T. D. Barfoot, State Estimation for Robotics. Cambridge, United Kingdom: Cambridge University
Press, 2017.

